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Abstract
We investigate the strategic behavior of firms in a Hotelling spatial setting. The inno-
vation is to combine two important features that are ubiquitous in real markets: (1) the
location space is two-dimensional, often with physical restrictions on where firms can
locate; (2) consumers with some probability shop at firms other than the nearest. We
characterise convergent Nash equilibria (CNE), in which all firms cluster at one point,
for several alternative markets. In the benchmark case of a square convex market, we
provide a new direct geometric proof of a result by Cox (Am J Political Sci 31:82–108,
1987) that CNE can arise in a sufficiently central part of the market. The convexity
of the square space is of restricted realism, however, and we proceed to investigate
grids, which more faithfully represent a stylised city’s streets. We characterise CNE,
which exhibit several new phenomena. CNE in more central locations tend to be eas-
ier to support, echoing the unrestricted square case. However, CNE on the interior
of edges differ substantially from CNE at nodes and follow quite surprising patterns.
Our results also highlight the role of positive masses of indifferent consumers, which
arise naturally in a network setting. In most previous models, in contrast, such masses
cannot exist or are assumed away as unrealistic.
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1 Introduction

The classical Hotelling (1929) model of spatial competition can be generalised in
several directions. Hotelling (and many researchers after him) assumed that both firms
and consumers are located on the unit interval [0, 1], representing “Main Street”. In the
simplest model, customers patronise the closest firm and the firms set an identical mill
price of the good they provide, hence firms compete only by choosing their locations.
Hotelling showed that for two competing firms the unique equilibrium is convergent
and both firms locate at the midpoint of the interval. For three firms, no equilibria
exist, and for four or more firms the equilibria are characterised by Eaton and Lipsey
(1975)—they are non-convergent with candidates occupying a rather diverse set of
positions.

One important direction of generalisation was to change the nature of the location
space. Salop (1979) considered, rather than a line, a circle. Eaton and Lipsey (1975)
believed that, if the number of firms is more than two, Nash equilibria on a bounded
two-dimensional location space are unlikely to exist. Okabe and Suzuki (1987) inves-
tigated this hypothesis computationally and Aoyagi and Okabe (1993) studied how
the shape of the two-dimensional market affects the existence of equilibrium.

On reflection, a two-dimensional location space also lacks realism. Indeed, the
map of any city shows that it is structured as a network, with both firms and cus-
tomers located along the city streets. In Sarkar et al. (1997), a network represents
spatially separated markets with consumers located at nodes only. Pálvölgyi (2011)
and Fournier and Scarsini (2019) consider the classical location game on a network
(where customers and firmsmay locate anywhere)—when the number of firms is large
enough, a pure strategy non-convergent Nash equilibrium exists and they show how
to construct it. Fournier (2019) considers approximate equilibria under more general
consumer distributions on the network.1

All the above work assumes that consumers buy from the closest store. Relaxing
this assumption is a second direction of generalisation of the basic model, pioneered
by Cox (1987, 1990) and further investigated by Cahan and Slinko (2017, 2018) and
Cahan et al. (2018). Cox suggested that, while a consumer usually shops at the closest
firm, there is some probability of shopping at more distant firms. Let the number
of firms be m and p = (p1, . . . , pm) be a vector of probabilities, where pi is the
probability that a consumer buys from the i th most distant firm, p1 ≥ p2 ≥ · · · ≥ pm ,

1 Competition on graphs has also been studied in the context of Voronoi games, a broad class of facility
location selection games. Two or more players, simultaneously or in turns, select one or more facility
locations to maximise their share of the market. It is often assumed that customers and firms are only
located at nodes (e.g., Dürr and Thang 2007; Mavronicolas et al. 2008; Feldmann et al. 2009; Sun et al.
2020), that indifferent consumers do not shop anywhere (Sun et al., 2020), or the game is very different
in other ways. To our knowledge, consumers always go to the nearest firm, although some authors study
diffusion processes which are very different in practical terms (Alon et al. 2010; Roshanbin 2014), yet
conceptually within a similar ballpark. Often, the focus is on the computational complexity of algorithms
for calculating solutions (e.g., Teramoto et al. 2011; Bandyapadhyay et al. 2015).
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and p1 > pm .2,3 The classical Hotelling model and most of the previous literature
(including, to our knowledge, all papers on networks) then corresponds to the special
case where the probability vector is given by p = (1, 0, . . . , 0).4 Cox showed that,
under more general probability vectors, CNE on a range of markets exist if and only
if c(p,m) ≤ 1/2, where c(p,m) = p1− p̄

p1−pm
and p = 1

m (p1 + . . . + pm). The parameter
c(p,m), also called the c-value, is always between 0 and 1 and is a measure of the
dominating incentives (Myerson 1999). If c(p,m) is high, consumers have a strong
tendency to go to the closest firms only and, therefore, the incentive for the firm is to
differentiate itself as the closest for as many consumers as possible. When c(p,m) is
low, consumers are quite happy to shop at more distant firms, so it becomes relatively
less important to stand out as the closest firm for a large number of consumers. In
different contexts, different p will make sense. Convenience shops tend to be visited
by consumers who seek a particular product that can be found at any convenience
shop. It would therefore be rare to need to go beyond the closest shop. With clothing
shops, in contrast, many consumers like to browse through an assortment of products
until finding something they want to buy, so are quite likely to go beyond the closest
shop.

Here we combine the two directions of generalisation above. We show how both
the market shape and consumer shopping behaviour influence the equilibrium location
choosing behaviour of firms, in particular, their tendency to agglomerate at a single
location. We begin with the benchmark case of a two-dimensional convex square
market—any location in the square can be chosen by a firm to set up shop without
restrictions.We provide a new direct geometric characterisation of Cox (1987) indirect
description of convergent Nash equilibria (CNE), where all firms locate at the same
point. Given p, CNEmay exist in a central region of themarket bounded by hyperbolas
that expands as c(p,m) decreases.

Noting that a city’s layout is decidedly non-convex and has more in common with
a network of nodes and edges, we then proceed to study the properties of CNE on
networks. New considerations arise. Firstly, instead of Euclidean distances, we must
analyse shortest paths between points on the network. Secondly, while previous papers
study settingswhere positivemasses of indifferent consumers do not arise, or disregard
the possibility as unrealistic, on a network they occur naturally (see, e.g., Fig. 1) and
add another layer of complexity to the analysis. We study in detail the case of a square
grid, which illustrates explicitly these phenomena. In general, more central areas are
supported as CNE for a broader range of probability vectors p, as in the case of the
unrestricted two-dimensional square. However, at a more local level, the equilibrium
properties of edges (interior locations on streets) exhibit quite different patterns and
are more irregular compared to those on nodes (intersections of streets). Counterin-
tuitively, two locations that are very close (on opposite sides of an intersection) can

2 The results are invariant to affine transformations of p. Therefore for readability we often do not require
the probabilities add to one.
3 An alternative interpretation is that pi represents the number of units a customer demands from the i th
nearest firm.
4 This is not the first paper to consider probabilistic behaviour in general—see, for example, Anderson
et al. (1994), De Palma et al. (1990), Lin et al. (1999), or Adams (1999). The approach there, however, is
otherwise quite different to our setting.
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Fig. 1 On this network, all consumers on the vertical line—a positive mass—are indifferent between points
u and v

have quite different equilibrium properties, which is not at all evident from the square
convex market case. The practical implication is that, while at a very broad level the
square convex market may be a reasonable approximation for the grid—this is not true
locally. There is a time and place for both levels of thinking. Developers considering
a new mall may initially consider whether a general neighborhood is likely to support
CNE. Next, a specific location within that neighborhood needs to be selected, at which
point a more detailed thinking is required. On top of our characterisation of CNE for
grids, the results also suggest that a greater focus on atomic distributions, even on
unidimensional spaces, may be an important and fruitful direction for future research.

Beforewe proceed, it is important to note thatmuch of the spatial competition litera-
ture is framed in terms of electoral competition between political candidates (Hotelling
1929; Downs 1957). The political interpretation of probability vector p is a class of
voting systems called scoring rules that includes plurality rule, antiplurality and Borda
rule, among others Cox (1987).5 There, pi represents the number of “points” assigned
to the i th ranked candidate on a voter’s ballot, although a probabilistic interpretation
is also possible.

We focus on the firm interpretation, where we believe grids are the most natural.
That said, our results for the convex square market and general networks are relevant
for political competition as well. There are cases where the political space may have
a network structure, even if not a grid. In Fig. 1, for example, the vertical line could
represent an issue that is only relevant for voters at the center left of the ideological
space. This might be some question about how to implement a certain policy that is
only relevant, to a first approximation, to voterswith this particular ideology. To the left
or right of this point, voters may not consider the issue important or may be unanimous
in their views. Another example is a star network with k edges, which we will return to
in Example 1. This could represent a “tribalised society” in which k groups compete
for power. A location along a given edge represents a level of favouritism of one
group over the others—from full favouritism, at the outside end of the edge, to no
favouritism, at the center of the star. In both examples, masses of indifferent voters
are possible and affect equilibrium outcomes.

5 This is why we will sometimes refer to the probability vector p as a rule. Plurality, antiplurality and Borda
rule are given by p = (1, 0, . . . , 0), p = (1, 1, . . . , 1, 0) and p = (m − 1,m − 2, . . . , 1, 0), respectively,
and their corresponding values of c(p,m) are 1 − 1/m, 1/m and 1/2.
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2 CNE for measurable metric location spaces

2.1 General results

In this section we give a general result on the existence of CNE. Later we investigate
in detail two specific markets—a convex square space and a grid.

The location space, I , is where both consumers and firms locate. It is assumed that
the location of a consumer is fixed while the firms compete by choosing locations
(and that the relocation costs are negligible). We assume that I is a measurable metric
space. The metric determines preferences: if there arem competing firms located on I
in positions u1, . . . , um and v ∈ I is the location of a consumer, then the consumer has
a linear preference order � induced by v on the set of firms determined by distance
along the shortest path and visits the i th closest firm with probability pi . Again,
p1 ≥ · · · ≥ pm and p1 > pm . Consumers break ties by randomisation.

It is important to note that the probabilistic description of consumer behavior
here is ordinal in nature—it only depends on rank and not on absolute distance.
This is a simplification of reality and a limitation of the model, but it signifi-
cantly improves tractability. We also believe that ordinal information does matter
to an extent that is comparable with absolute distance, something that is not cap-
tured in many probabilistic models that do incorporate a dependence on absolute
distance.6

There is a measure μ defined on I that gives the density of consumers on subsets
of I . We assume I has finite measure, i.e., μ(I ) < ∞. We introduce the following
notation:

Ku�v = μ({ consumers with strict preference for u over v}),

where u, v ∈ I . Ku∼v , analogously, is the set of indifferent consumers.7 The measure
μ is assumed to be such that these sets are always measurable.

Given a vector of probabilities p, each firm then calculates the expected measure
of customers who will patronise it. Firms choose their locations simultaneously so
as to maximise this expected measure of customers. Our focus is convergent Nash
equilibria (CNE), in which all firms adopt the same location. This is a natural starting
point as the most basic manifestation of firm agglomeration. Non-convergent Nash

6 We believe that, in particular, sharp discontinuities in the probability with which a consumer shops at a
firm as it changes in ranking are a realistic feature. That is, for a given consumer, if firm i moves further
away than another firm, there should be a jump in the probability of shopping at firm i . In probabilistic
models such as those of De Palma et al. (1990), Lin et al. (1999), or Adams (1999), the probability the
consumer goes to firm i is continuous as i moves beyond another firm, which is also not entirely realistic.
Of course, the ideal model would depend on both rank and distance.
7 Theorem 1, below, in fact applies even more generally to situations where the numbers Ku�v , Kv�u and
Ku∼v may not be generated by a metric. For instance, suppose customers prefer firms that are within some
“walking distance”, as defined by a metric, over firms that are not within walking distance. Additionally,
consumers are indifferent between two firms within walking distance or between two firms that are outside
of walking distance. The key thing is that we can always partition the space into these three groups of
consumers.
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equilibria (NCNE) may also be possible, but are substantially more difficult to analyse
and we leave them for future research.8

For any u ∈ I , we define

K (u) = sup
v∈I

Kv�u

Ku�v

.

This is the maximal achievable ratio of consumers preferring some other point v to u
over consumers that prefer u to v.

The main result of this section is Theorem 1. Subsequently when we focus on the
convex square market and grids we will focus on uniformmeasures for tractability, but
Theorem 1 holds in general.9 For the special case of a square convex market case, the
corresponding result was proven by Cox (1987). Theorem 1 is more general, however,
because it applies on other spaceswhere themeasure of consumers indifferent between
two points may be non-zero. In fact, this generality is critical for our study because
non-zero measures of indifferent consumers are a regular and natural occurrence on
networks.

Theorem 1 Given a location space I with m competing firms and probability vector
p, a point u ∈ I is a CNE if and only if

K (u) ≤ 1

c(p,m)
− 1, (1)

where c(p,m) = p1− p̄
p1−pm

.

Proof If all firms are located at u, each of them will get pμ(I ) consumers. If a single
firm deviates from u to location v, then all customer will be split into three sets: those
who are closer to v than to u, those equidistant from v and u and those who are closer
to u than to v. The expected number of customers shopping at the deviating firmwould
be p1Kv�u + pKu∼v + pmKu�v .

Thus, for any v ∈ I , for the deviation to v not to be profitable, we must have

p1Kv�u + pKu∼v + pmKu�v ≤ pμ(I ) = p(Kv�u + Ku∼v + Ku�v).

This rearranges to

Kv�u

Ku�v

≤ p − pm
p1 − p

= p1 − pm + p − p1
p1 − p

= 1

c(p,m)
− 1.

8 Even on the simple unit interval, NCNE are much more complicated than CNE, as can be seen in Cahan
and Slinko (2017) and Cahan et al. (2018). Assuming customers always go to the nearest firm, Fournier
and Scarsini (2019) have made progress studying NCNE on networks. They show that NCNE exist once
the number of firms is sufficiently large, and the NCNE they describe are quite complex in structure.
9 In our contexts, reasonable non-uniform distributions of consumers would thus retain the flavour of the
results, but the specific formulas we derive would no longer apply. Note that uniform distributions are not
necessarily unrealistic—they are consistent with firms that believe or assume the distribution is uniform as
discussed by Aragonès and Xefteris (2012) and Cahan and Slinko (2017).
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For u to be a CNE, even the best deviation should not be profitable, hence we take the
supremum of the left-hand side in (1). 	


Note that the value K (u) is not always defined, e.g., when u is a leaf on a network.
Then we set K (u) = ∞. Hence Theorem 1 rules out a CNE at a leaf.

If the measure of indifferent consumers is always zero, which will be the case on
a line or a two-dimensional square (but not on grids), it will be more convenient to
use the value W (u) := supv∈G Kv�u

μ(I ) = K (u)
1+K (u)

, where μ(I ) is the total measure of
consumers. Then condition (1) can be rewritten as

W (u) ≤ 1 − c(p,m). (2)

Let us consider several examples.

Example 1 (Linear, circular and star markets) For a linear market I = [0, 1] with
a uniform distribution of consumers, CNE exist if and only if c(p,m) ≤ 1/2. Any
location x ∈ I such that c(p,m) ≤ x ≤ 1 − c(p,m) can support a CNE (Cox 1987).

For a circular market I with a uniform distribution of consumers, a CNE exists if
and only if c(p,m) ≤ 1/2 In such a case every location can support a CNE.

Indeed, deviating to a point v �= u, a deviating firm gets half of the customers, so
K (u) = 1.

Consider a star graph Sk with k ≥ 2 edges and k + 1 nodes where each edge
has measure 1 of consumers. The central node u is a CNE if and only if W (u) =
1/k ≤ 1 − c(p,m). This is because the best deviation for any firm would be to
deviate marginally towards one of the leaves. In particular, in the classical case with
p = (1, 0, . . . , 0), it is a CNE if and only if m ≤ k, i.e., the number of firms does not
exceed the number of edges. For any worst-punishing or intermediate p, it is always
a CNE. If u is on an edge at distance ε away from the central node, then the best
deviation will be to deviate to the point v marginally towards the central node, in
which case Kv�u = k − 1 + ε and W (u) = 1 − 1−ε

k .
Then (2) tells us that for u to be a CNE we must have c(p,m) ≤ 1−ε

k . In particular,
it will never be a CNE for p = (1, 0, . . . , 0), but for p = (1, . . . , 1, 0) it will always
be when the number of firms is large enough: k ≤ m(1 − ε).10

A consequence of Theorem 1 is that, for any point u ∈ I , unless K (u) is not defined,
there is always a threshold value of c(p,m), c(u) = 1/(K (u) + 1), below which no
CNE exist. That is, the set of all rules p with c(p,m) > c(u) do not admit CNE at u,
while the set of all rules p with c(p,m) ≤ c(u) do admit CNE at u.

Thus agglomeration at any point (except where K (u) = ∞) can constitute a CNE
provided p is such that c(p,m) is low enough. That is, provided the consumers’

10 These results have interesting implications for the political interpretationof the star network asmentioned
in the Introduction. Equilibria where no candidates advocate for favouring any one group are sustainable
under plurality provided the number of candidates is not too large, but they are always sustainable for rules
with c(p,m) ≤ 1/2 such as antiplurality. On the other hand, plurality has the advantage that equilibria where
one group is favoured never exist. For antiplurality, it is possible to sustain equilibria where all candidates
advocate in favour of one group, which is likely undesirable. Borda looks particularly good in that it always
allows CNE at the central node but never anywhere else.
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shopping behaviour exhibits sufficient lack of favouritism for the closest firms over
more distant firms. On the other hand, when c(p,m) is high enough, no CNE can be
supported at any point—consumers favour the closest firms strongly enough that there
is always an incentive to deviate away from the cluster. As c(p,m) decreases, the set
of possible CNE cannot get smaller.

2.2 Two-dimensional squaremarket

Westart by considering a two-dimensional square, I = [0, 1]2,without any restrictions
on where firms can locate as perhaps the most basic extension of the linear model. This
serves as a benchmark for our subsequent study of what happens when restrictions are
placed on where firms and consumers are located, i.e., when we look at a grid. This
case has previously been studied by Cox (1987), who showed that CNE exist if and
only if c(p,m) ≤ 1/2. However, this indirect result does not explicitly describe the
set of points that can support CNE for a given probability vector—here, we provide a
direct, geometric result.

There cannot be a positive measure of consumers indifferent between two points,
so for a point u = (x, y), we only need to calculate the simpler W (u) =
supv∈I Kv�u/μ(I ) = supv∈I Kv�u (normalising the total measure of consumers to
μ(I ) = 1). We assume without loss of generality that u ∈ I1 = [0, 1/2]2, as we can
obtain all other CNE in the other quadrants I2 = [1/2, 1] × [0, 1/2], I3 = [1/2, 1]2
and I4 = [0, 1/2] × [1/2, 1] by symmetry.

For any two points u, v ∈ I , the sets Kv�u and Ku�v are separated by a straight line
passing through the midpoint of the line segment between u and v and perpendicular
to it. It is therefore clear that the best deviation by a single firm from u is to a point
infinitesimally close to u in some direction. Then W (u) will be the area of one of the
regions which appear when a line through u divides the square into two parts.

Lemma 1 Let λ be a line through u in the interior of I1 dividing the square into regions
α and β so that μ(β) = W (u) and μ(α) = 1 − W (u). Then α is a triangle.

Proof Since μ(α) ≤ μ(β), then α can be either triangle or a trapezium. Let λ be a
line through u such that it forms a trapezium with the parallel bases being parts of
each of the top and bottom sides of the square and one of the lateral sides being a side
of the square. Now consider the line through u and the top left corner (0, 1). Clearly
the two light grey triangles (see Fig. 2) formed are similar. The “height" of the upper
triangle (i.e., the distance from u to the upper side) is equal to 1− y, but, as y ≤ 1/2,
we know 1− y ≥ y. Since y is the height of the lower triangle, the upper one is larger.
This means that the triangle ABC must have smaller area than the trapezium ABDE ,
which shows that λ �= ED. Therefore, α cannot be a trapezium. The arguments for
horizontal trapeziums (see Fig. 2) are symmetric. Therefore we must have that α is a
triangle. 	


Lemma 2 For any u = (x, y) ∈ I1 we have W (u) = 1 − 2xy.

Proof If y = 1/2 the result is clear. Suppose now that u is in the interior of I1. We
let λ be the line through u which bounds α, the region as defined in the previous
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Fig. 2 Dividing the square into
triangles and trapeziums

1− y
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y
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lemma. From Lemma 1 we also know that α must be a triangle, so we know that λ

crosses the x- and y-axes. Let b be the intersection of λwith the y-axis and let a be the
intersection with the x-axis, so that μ(α) = 1

2ab. The gradient of λ is m = y−b
x , so

that λ = {(x, y) ∈ I : y = mx + b}. We then have 0 = y−b
x a+ b, which is equivalent

to a = bx
b−y . Therefore

μ(α) = 1

2
ab = b2x

2(b − y)
, hence

∂μ(α)

∂b
= x

2

(
2b

b − y
− b2

(b − y)2

)
.

So then ∂μ(α)
∂b = 0 if and only if 2b

b−y = b2

(b−y)2
, or equivalently b = 2y, and hence

a = 2x . Therefore μ(α) = 1
2ab = 2xy, and hence W (u) = 1 − 2xy, as required. 	


This means that we have our desired explicit formula for W (u), namely W (u) =
1 − 2xy for u ∈ I1. And since I is symmetric we have similar formulas for u in the
other quadrants as well. This allows us to fully characterise CNE geometrically in the
square market.

Theorem 2 For a given probability vector p with c(p,m) ≤ 1
2 , the profile (u, . . . , u)

is a CNE if and only if u ∈ R = ⋃{R1, R2, R3, R4}, where:

R1 = {(x, y) ∈ I1 : 2xy ≥ c(p,m)};
R2 = {(x, y) ∈ I2 : 2(1 − x)y ≥ c(p,m)};
R3 = {(x, y) ∈ I3 : 2(1 − x)(1 − y) ≥ c(p,m)}; and

R4 = {(x, y) ∈ I4 : 2x(1 − y) ≥ c(p,m)}.

Proof If u = ( 12 ,
1
2 ) then by Lemma 2 u is a CNE. If u ∈ I1, then by Theorem 1 and

Lemma 2 we must have that u is a CNE if and only if 2xy ≥ c(p,m), or equivalently
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Fig. 3 Illustrating the area R of
CNE for c(p,m) = 1/4

I1 I2

I3I4

R1 R2

R3R4

u ∈ R1. Since R must be symmetric about the axis of symmetry of I , we must have
that if u ∈ I2 = {z ∈ I : 1

2 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1
2 } then u is a CNE if and only if

u ∈ R2 too. Similarly for all i if u ∈ Ii then u is a CNE if and only if u ∈ Ri . 	


Therefore we have found a region in I bounded by four hyperbolas for which all
points inside support CNE and all points outside do not. The region in which CNE
exist is illustrated in Fig. 3. When c(p,m) > 1/2, no CNE exist. At c(p,m) = 1/2,
the center of the square is the first point to support CNE. As c(p,m) decreases, the
region R expands. Moreover, except for a point on the boundary, any point can be a
CNE for low enough c(p,m), althoughmore central points are easier to support (allow
CNE for a wider range of p). This makes sense at an intuitive level. The more willing
consumers are to travel to more distant firms, the easier it is to imagine a cluster of
firms far from the city center—a cluster of clothing shops is probably the most viable
at the city center, but that does not rule out clusters at distant locations like an outlet
mall.11 This pattern will turn out to be roughly reflected when we restrict the space to
a grid, but not exactly—the non-convexity of the grid, specifically the fact that you can
only reach a firm through a limited number of paths, will give rise to new equilibrium
phenomena.

2.3 Grids

A grid is perhaps the most natural network to represent a stylised district of the city.
Unlike the convex square, this market imposes the more realistic assumption that
activity in the city occurs along streets – firms cannot locate anywhere they please,
and consumers do not travel as the crow flies. Grids have so far been studied only in
settings where consumers always go to the closest firm. Existence of NCNE is assured
when the number of firms is large enough (Pálvölgyi 2011; Fournier and Scarsini

11 It is interesting to note parallels with probabilistic voting models (De Palma et al. 1990; Lin et al.
1999; Adams 1999) that find that CNE tend to exist in situations with greater uncertainty. These situations,
roughly speaking, are qualitatively similar to settings where customers are likely to shop at more distant
firms, i.e., where c(p,m) is low and CNE are thus likely.
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2019). In a Voronoi game context, Sun et al. (2020) show that NCNE exist for four
firms when the grid is sufficiently narrow.12

LetG be a square grid with sides that areM edges long. Thus, it has (M+1)2 nodes
(equivalently, vertices or intersections of streets) and 2M(M + 1) edges in total. To
keep things simple, we will focus on the case where M is even—insights are similar
in the case of M odd. Let u ∈ G be a location in the northeast quadrant of the grid
(by symmetry, there is no loss of generality). We write u = (x, y), where x ≥ 0 is the
horizontal distance from u to the central node and y ≥ 0 is the vertical distance. Thus,
the central node is at coordinates (0, 0) and the northeast corner is at (M/2, M/2).
Since the network includes edges as well as nodes, either x or y can be a non-integer,
but not both.

We assume a uniform distribution of consumers over the grid, normalised so that
one edge has measure 1. According to graph theory, the distance between two points
on a graph is the length of the shortest path connecting them.

Consider nodes u = (x, y) and u′ = (x − 1, y − 1) where y, x ≥ 1. Note that
consumers in the northwest and southeast corners of the grid are indifferent between
u and u′ (see Fig. 4). Let us introduce the notation:

NW (u) = {(x ′, y′) ∈ Ku∼u′ : x ′ ≤ x and y′ ≥ y};
SE(u) = {(x ′, y′) ∈ Ku∼u′ : x ≤ x ′ and y ≥ y′}.

Though functions of u, we usually just write NW and SE when no confusion can
emerge. We can write down an explicit formula for the number of consumers in each
of these sets:

|NW | = (M/2 + x − 1)(M/2 − y + 1) + (M/2 + x)(M/2 − y),

|SE | = (M/2 + y)(M/2 − x) + (M/2 + y − 1)(M/2 − x + 1).

In a similar way, note that the consumers in the northeast portion of the grid described
in Fig. 4 strictly prefer u over u′, while those in the southwest portion prefer u′ over
u. We use the notation |SW | = |Ku′�u | and |NE | = |Ku�u′ |. We have the following
formulas for these areas:

|SW | = 2(M/2 + x)(M/2 + y),

|NE | = 2(M/2 − x + 1)(M/2 − y + 1).

Theorem 3 is our characterisation of CNE at the nodes of the grid. To prove a
point is a CNE, we need to show that no firm could profitably deviate to another
position. By Theorem 1, this means finding the point u′ that maximises the ratio
Ku′�u/Ku�u′ . In principle, then, we need to check every possible deviation, which
appears a daunting task. Much of the work involves ruling out all but one or several
potential “best deviations” that dominate all other possible deviations. Once we know

12 They additionally assume that firms and consumers only locate at nodes and that indifferent consumers
do not go to any firm, which is very different to our model.
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Fig. 4 Thick black lines indicate
consumers preferring u′ to u;
thin black lines: consumers
preferring u to u′; dotted lines:
consumers indifferent between
u′ and u u

u′

these best deviations we calculate K (u) and thus determine whether a CNE is possible
at point u.

Theorem 3 Let u = (x, y) be a node with x, y ≥ 0 and m firms co-located at u. Then
the deviation u′ that maximises the ratio Ku′�u/Ku�u′ is among the following:

(i) If x > 0 and y > 0, the point (x − 1, y − 1) or just to the east or north of it.
(ii) If y = 0 and x > 0, the point (x − 1, y). By symmetry, the point (x, y − 1) if

x = 0 and y > 0.
(iii) If u = (0, 0), either (1, 0) or (0, 1).

In case (i),

K (u) = max

{ |NW | + |SW |
|NE | + |SE | ,

|SW |
|NE | ,

|SW | + |SE |
|NW | + |NE |

}
. (3)

In case (ii),

K (u) = M2 + (2M + 1)max(x, y) − 1/2

M2 + 2M − (2M + 1)max(x, y) + 1/2
. (4)

In case (iii),

K (u) = M2 − 1/2

M2 + 2M + 1/2
. (5)

Thus, by Theorem 1, u can be supported as a CNE if and only if K (u) ≤ 1
c(p,m)

− 1
and the threshold value of c(p,m) below which u can be supported as a CNE is
c(u) = 1

K (u)+1 .

Proof To determine whether u is a CNE we want to calculate K (u). This requires
finding the point u′ at which the ratio Ku′�u/Ku�u′ is maximised. First, suppose
u = (x, y) is a node with positive integers x, y. We claim that the horizontal move
(keeping y constant) that maximises Ku′�u/Ku�u′ is to the node (x−1, y), rather than
to a point in the interior of the edge, i.e., to a point (x − ε, y), where 0 < ε < 1. In
Fig. 5a, the customers on bold segments strictly prefer u′ over u, while those on thinly
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uu′

ε
2

ε
2

(a)

u

u′

1+ε
2

1+ε
2

ε

(b)
Fig. 5 Possible deviations from a point u in case (i). Thick black lines indicate consumers preferring u′ to
u; thin black lines: consumers preferring u to u′

shaded edges strictly preferu tou′. The set of indifferent consumers hasmeasure zero in
such a configuration. Consider a point slightly to the left of u′, i.e., u′′ = (x−ε−η, y),
where η > 0 is very small. We compare the score of i upon deviation to u′ with the
score upon deviation to u′′. We can see that u′′ looks more attractive than u′ because
the firm gains η

2 consumers from M edges and loses η
2 from only one edge (the one on

which it is moving). Thus, the ratio Ku′�u/Ku�u′ is increasing as u′ moves to the left.
By the same logic, the firm would want to continue left until reaching node (x − 1, y)
as there is no discontinuity of the score when reaching this node.13

However, the best horizontal may not be the best move overall. Consider amove to a
pointu′ = (x−1, y−ε), where 0 < ε < 1.Consider also a pointu′′ = (x−1, y−ε−η)

where η > 0 is small (see Fig. 5(b)). Moving from u′ to u′′, i is gaining from each
edge (x − 1, z) where z < y but losing at the same rate from each edge (x − 1, z),
where z ≥ y. Because y > 0, there are more edges from which i is gaining, so u′′
looks better than u′. Thus, Ku′�u/Ku�u′ increases as i moves towards the next node
(x − 1, y − 1).

By a similar argument, firm i could also have, instead of initially moving horizon-
tally from u, moved down vertically from u to the node (x, y − 1) and then across
towards (x − 1, y − 1) from the right.

However, whether i should actually arrive at the node (x−1, y−1) itself is not clear,
since there is a potential discontinuity in the score. The reason is that, at (x−1, y−1),
the areas NW and SE will be indifferent between this node and u (the dotted edges in
Fig. 4), and these are sets of positive measure. We therefore need to compare the ratio
Ku′�u/Ku�u′ for three possible deviations: u′ = (x −1, y−1), the limiting point just
north of (x − 1, y − 1) and the limiting point just east of (x − 1, y − 1).14

13 Clearly, a move even further along would decrease Ku′�u/Ku�u′—once we pass the node (x − 1, y),
moving further to the left implies a loss along all the edges between (x − 1, z) and (x, z) for all z.
14 Note that if y ≥ x , |SE | ≥ |NW |, so the move to (x − 1 + ε, y − 1) is better than the move to
(x − 1, y − 1 + ε) and we only need one comparison.
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Fig. 6 CNE on nodes in the case
of M = 6. The numbers at the
nodes of the grid indicate the
threshold values c(u)

corresponding to those nodes

0.577 0.423

0.360

0.268

0.231

0.138

0.027

0.113

0.107

0.063

Next, consider the cases where we are on one of the central axes, i.e., u = (x, 0) or
u = (0, y). If x > 0 and y = 0, a deviation to u′ between u and (x − 1, 0) results in a
higher value of Ku′�u/Ku�u′ if u′ is further from u. In fact, the best move would be
to the point (x − 1, 0). Finally, if u = (0, 0), similar reasoning leads to the conclusion
that the best move is to u′ = (1, 0) or u′ = (0, 1). 	


The main implication, to be discussed further in Corollary 1, is that, at least as far
as nodes go, more central nodes support CNE for a larger range of consumer shopping
behaviour. This is consistent in nature with what we saw for the square convex market.

Example 2 Let us consider the example of M = 6, displayed in Fig. 6. We calculate
the threshold c(u) for each node in the top right quadrant in Fig. 6 (the remaining
nodes follow by symmetry). As we can see, the further out from the center of the grid,
the more difficult it becomes to support a node as a CNE. The easiest point to support
a CNE is the central node (0, 0), which has a threshold c(u) = 0.577. It is interesting
to note that this means the central node on the grid is easier to support as a CNE than
the center of the two-dimensional convex square, which has a threshold of c(u) = 0.5.
This does not say anything about whether CNE exist on interior points of an edge
(non-nodes)—we will consider this next.

Next, we turn our attention to points interior to an edge. It is so far not clear when a
point on an edge between two nodes would be a CNE—whether this would be easier or
harder to support than a node. Let u = (x − ε, y), where x, y ≥ 1 and 0 < ε < 1, and
let u′ = (x − 1, y − 1 + ε). Given these two points, again the grid can be partitioned
into four regions: two regions of indifferent consumers in the northwest and southeast
and, in the northeast and southwest, consumers preferring u and u′, respectively (see
Fig. 15a). Let NW ′, NE ′, SE ′ and SW ′ denote these regions and let NW , NE , SE
and SW be the areas defined above during the comparison of (x, y)with (x−1, y−1).
Then we have the following formulas:

|NW ′| = |NW | + ε(M + x − y − 1); |SE ′| = |SE |;
|SW ′| = |SW | − ε(M/2 + x − 1); |NE ′| = |NE | − ε(M/2 − y).
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Note that the case where u = (x, y − ε) follows by symmetry.
Another important point to consider will be u′ = (x − 1 − ε, y − 1), when x > 1

and y ≥ 1. In a similar fashion, we again partition the grid into areas of indifferent
consumers in the northwest and southeast, consumerswho prefer u in the northeast and
consumers who prefer u′ in the southwest (see Fig. 15b). The number of consumers in
these areas, denoted NW ′′, SW ′′, SE ′′ and NE ′′, are given by the following formulas:

|NW ′′| = |NW | − M + 2y − 1; |SE ′′| = |SE |;
|SW ′′| = |SW | − ε; |NE ′′| = |NE | + M − 2y + 1 + ε.

With these definitions, Theorem 4 provides an analogous characterisation of CNE
to Theorem 3, but for points interior to edges rather than nodes.

Theorem 4 Let u = (x − ε, y), where x > 0 and 0 < ε < 1, be occupied by m firms.
The deviation u′ of a single firm that maximises Ku′�u/Ku�u′ is among the following:

(i) If y > 0 and x > 1, the point (x − 1, y − 1+ ε), just to the north it, or the point
just to the east of (x − 1 − ε, y − 1).

(ii) If y > 0 and x = 1, the point (x − 1, y − 1 + ε), just north of it, or the point
(x − 1, y − 1).

(iii) If y = 0, the point (x − 1, 0).
(iv) Cases that are symmetric to (i)–(iii).

Therefore, in case (i),

K (u) = max

{ |NW ′| + |SW ′|
|NE ′| + |SE ′| ,

|SW ′|
|NE ′| ,

|SW ′′| + |SE ′′|
|NW ′′| + |NE ′′|

}
. (6)

In case (ii),

K (u) = max

{ |NW ′| + |SW ′|
|NE ′| + |SE ′| ,

|SW ′|
|NE ′| ,

Ku�u

Ku�u

}
, (7)

where u = (x − 1, y − 1) and

Ku�u

Ku�u
= (M/2 + y)(2M + 1) − 1/2(M + ε)

(M/2 − y)(2M + 1) + 3M/2 + ε/2
. (8)

In case (iii),

K (u) = (M/2 + x)(2M + 1) − M/2 − 1/2 + ε(M − 1)/2

(M/2 − x)(2M + 1) + 3M/2 + 1/2 − ε(M − 1)/2
. (9)

Thus, by Theorem 1, u is a CNE if and only if K (u) ≤ 1
c(p,m)

− 1 and the threshold

value of c(p,m) below which u can be supported as a CNE is c(u) = 1
K (u)+1 .

Proof See Appendix. 	


123



D. Cahan et al.

Theorem4 has a number of implications. First, Corollary 1 presents some properties
of K (u) that follow from both Theorems 3 and 4. It says that, at any point u except
for the central node (0, 0), increasing M increases the threshold c(u)—u becomes
easier to support, as it is increasingly central. Increasing x or y, for fixed M , on the
other hand, decreases c(u). This similarly makes sense—we reach less central points
that can be supported for a smaller range of probability vectors p. For u = (0, 0),
increasing M makes the central node more difficult to support. This is because, as M
increases, the best deviation from the center becomes increasingly attractive: in the
limit you essentially get half the consumers, and the small difference in the number
of consumers preferring point u over u′ becomes negligible.

Corollary 1 Let u be a point on the grid. Then K (u) is:

(i) Increasing in M, holding u = (0, 0) fixed;
(ii) Decreasing in M, holding u �= (0, 0) fixed;
(iii) Increasing in x or y, holding M fixed.

At all points u, K (u) converges towards 1 as M tends to infinity.

Proof See Appendix. 	

When comparing nodes to interior points on edges, Theorem 4’s formulas for K (u)

resemble those obtained in Theorem 3 except that there is an additional ε term on
the numerator and denominator. Consider how K (u) depends on ε. This is important
because it tells us which end of a given edge is more likely to support a CNE. We
might expect, based on our previous results, a CNE to be easiest to support at the end
of the edge closer to the center of the grid. However, the dynamics are surprisingly
complex, and the patterns are not unambiguous. What matters for whether u is a CNE
is its position relative to u′, the best deviation from u. As ε increases within an edge,
the best deviation may change in several ways. First, the point(s) around which the
best deviation is located themselves may depend on ε (Theorem 4(i), (ii)). Second, in
our expressions (6) and (7) for K (u), which of the arguments attains the maximum
may switch. Third, as in Theorem 4(iii), the best move may not actually change when
ε changes. As a consequence, it turns out that, within an edge, K (u)maybe increasing
or decreasing in ε.

Inmany cases,within an edge, as c(p,m) decreases, the set ofCNE“grows inwards”
towards the center. That is, points further away from the center or a central axis can
be easier to support than points closer to the center. This seemingly counterintuitive
result can be understood by considering the example where u = (x − ε, 0). Then
the best move is to u′ = (x − 1, 0). As ε increases, more of the consumers on the
edge between u and u′ start to prefer u over u′. However, along the horizontal edges
between (x − 1, z) and (x, z) for z �= 0, more consumers along these paths begin
to prefer u′. This makes u′ look relatively more attractive (more precisely, the ratio
Ku′�u/Ku�u′ increases) as ε increases, so u will be harder to support as a CNE.

Example 3 We return to the case of M = 6 and consider edges. Using Theorem 4
we can calculate how the threshold value c(u) varies along edges. The arrows in
Fig. 7 point in the direction of decreasing c(u), i.e., from points with higher thresholds
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Fig. 7 CNE on edges in the case
of M = 6. For points in the
interior of an edge (non-nodes),
the arrows indicate the direction
of decrease of the threshold
values within the given edge

x

c(u)

1

0.5

1 2 3
Fig. 8 Threshold c(u) along the segment from (0, 0) to (3, 0)

towards points with lower thresholds. In general, within a given edge, as we move
“towards the center” of the grid, points become harder to support. However, not for
the outermost edges (where y = M/2 or x = M/2), on which, within an edge, it
actually becomes harder to support points as we move away from the axes towards
the diagonal. Figures 8, 9, 10 and 11 plots the threshold value of c(p,m) as x and ε

change for fixed values of y.

Another striking feature apparent in Figs. 8, 9, 10 and 11 are the discontinuities
in the threshold value of c(p,m) at nodes when ε approaches 1. This implies that
within in a small region near an intersection of city streets, some points are predicted
to exhibit CNE substantially more often than others, despite their proximity. This is
formalised in the following corollary.

Corollary 2 The threshold c(u):

(i) Is continuous as ε approaches 0 at nodes (x, y), x ≥ 1. That is, limε→0 c(x −
ε, y) = c(x, y).

(ii) Is not in general continuous as ε approaches 1 at nodes (x, y). That is,
limε→1 c(x − ε, y) is not generally equal to c(x, y).
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x

c(u)

1

0.5

1 2 3
Fig. 9 Threshold c(u) along the segment from (0, 1) to (3, 1)

x

c(u)

1

0.5

1 2 3
Fig. 10 Threshold c(u) along the segment from (0, 2) to (3, 2)

x

c(u)

1

0.5

1 2 3
Fig. 11 Threshold c(u) along the segment from (0, 3) to (3, 3). The jump at the point (0, 3) is not to
scale—it would be too small to distinguish. The key point is that there is a jump down from the limiting
value as x approaches 0 and the value at (0, 3)
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c(p,m) = 0.577 c(p,m) = 0.423 c(p,m) = 0.400 c(p,m) = 0.358

c(p,m) = 0.230 c(p,m) = 0.065 c(p,m) = 0.057 c(p,m) = 0.028

Fig. 12 CNE in the case of M = 6 for different values of c(p,m). Not exactly to scale

Example 4 For several illustrative values of c(p,m), the set of CNE, including edges,
is displayed in Fig. 12. As c(p,m) decreases, the set of CNE expands. For high values
of c(p,m), CNE do not exist. The first point to support a CNE is the central node
which, as noted in Example 2, is easier to support as a CNE than the center of the
two-dimensional convex square. The next easiest points to support are the nodes (0, 1),
(1, 0), (−1, 0) and (0,−1). As far as nodes go, this is what we expect, as these are
the next most central nodes. However, the edges connecting these nodes to (0, 0) are
not yet CNE, despite being seemingly more central. Moreover, on one of these edges,
the end of the edge that more easily supports CNE is the end further from the center
of the grid, illustrating how the set of CNE may “grow inwards” along edges towards
the center of the grid.

It is also interesting to note that there may be some intervals in the value of c(p,m)

over which there is no change in the set of equilibria. For example, consider the bottom
two cases displayed in Fig. 12. Every point on the edge between (2, 2) and (3, 2) has
become a CNE once c(p,m) reaches 0.051, but points on the edge from (2, 3) to (3, 3)
do not start becoming CNE until c(p,m) reaches about 0.290. For c(p,m) between
these values, there is no change in the set of CNE.

Finally, on the square convex market the boundaries of the market cannot be sup-
ported as CNE for any p. On the grid, in contrast, every point can eventually be
supported as a CNE, when c(p,m) is low enough. This is because, for any two points,
each always has a positive measure of consumers preferring it over the other point.
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3 Conclusion

In a real city firms are typically not restricted to just a linear “Main Street” when
deciding where to set up shop, but rather the space of possible locations is two-
dimensional. Even then, they are two-dimensional in a very restricted sense—firms
locate along streets, the same streets that consumers must travel in order to shop. At
the same time, most previous papers assume that consumers always purchase from the
nearest firm when, more realistically, they are only more likely to.

We study the existence and properties of CNE in a spatial setting that incorporates
both of these more realistic elements. The results, aside from providing detailed new
characterisations of CNE, point to interesting new phenomena that future research
should look to explore further in a broader range of contexts. For example, in our study
of networks, positive masses of indifferent consumers arise and play an important role.
This suggests that allowing for the possibility of point masses of consumers, which
are often assumed away in the previous literature, may be important more generally.
In the workhorse one-dimensional Main Street model, for example, it may make sense
to allow atomic distributions of customers if there are certain access points through
which consumers arrive to the market, which may be fiercely contested by the firms. In
the political interpretation, too, there may be point masses of voters at certain natural
policy positions (far left, center left, etc.).

Future work may also investigate other extensions in combination with one or both
of the two features studied here. Examples include price competition (Heijnen and
Soetevent 2018), other consumer distributions (Tarbush 2018; Fournier 2019), network
externalities (Ahlin and Ahlin 2012; Peters et al. 2018), and Voronoi game settings.
Additionally, our results are informative about the forces that lead to the clustering of
firms at a single commercial center, but do not shed light on non-convergent equilibria
and how their existence and properties depend on network structure and consumer
shopping behaviour—intuitively, we might expect multiple commercial centers to
arise in more spread out, loosely connected cities. This is non-trivial even in the unit
interval case (Cahan and Slinko 2017; Cahan et al. 2018), but remains important to
our understanding of clustering in real cities. Even more ambitious would be to study
a model where the network itself endogenously arises as the firms compete. Finally,
some of the implications of our model might be amenable, in principle, to an empirical
analysis of the prevalence of clustering at different locations as a function of city layout
and shopping behaviour (proxied by firm type).

Appendix

Proof of Theorem 4 First, let us consider case (i). Consider the point u = (x − ε, y),
where x > 1 and y > 0 are integers and 0 < ε < 1. Consider a firm deviating to
(x−ε−η, y), where η > 0 is small. As in the case where u is the node (x, y), it would
be better to deviate to the node (x − 1, y), because by moving to the left the firm is
gaining from consumers along multiple edges and is losing from only one edge.

Upon reaching the node, thefirmwould thenwant to continuedeviating towards (x−
1, y−1) because, again, there aremore edges fromwhich the firm is gaining consumers
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u

u′
ε + η

ε

(a)

u

u′

ε + η

ε

(b)
Fig. 13 Comparing the move just north of (x − 1, y − 1 + ε) to the move just west of (x − 1 − ε, y − 1).
Thick black lines indicate consumers preferring u′ to u; thin black lines: consumers preferring u to u′

than fromwhich it is losing.However, the firmwill continue to gain only until it reaches
the point (x−1, y−1+ε), at which point the northwest and southeast corners become
indifferent (see Fig. 15a). Therefore, the move that maximises Ku′�u/Ku�u′ could be
(x − 1, y − 1 + ε), just to the north, or just south of it. However, the latter move is
actually dominated since by continuing to move down the edge towards (x −1, y−1)
the number of edges from which the firm is gaining consumers exceeds those from
which it is losing consumers. Even on reaching (x − 1, y − 1), since x > 1, there is a
further incentive to deviate west, to the point (x −1− ε, y−1). Here, there is another
discontinuity in the score (see Fig. 15b) so the following points could also potentially
be the best deviation: (x − 1 − ε, y − 1), just to the east, or west of it.

It turns out, however, that of the latter three points, only the point just east of
(x − 1 − ε, y − 1) is not dominated by another deviation. To see this, first consider
the deviation to a point inifinitesimally west of (x − 1− ε, y − 1). This is dominated
by the deviation infinitesimally north of (x − 1, y − 1 + ε). This can clearly be seen
by comparing the two panels in Fig. 13.15

As for the deviation to precisely the point (x − 1 − ε, y − 1), it is dominated by
the move precisely to (x − 1, y − 1 + ε). To see this, we show that |SW ′|/|NE ′| >

|SW ′′|/|NE ′′|. That is,
|SW | − ε(M/2 + x − 1)

|NE | − ε(M/2 − y)
>

|SW | − ε

|NE | + M − 2y + 1 + ε
.

This can be expressed as

|SW |(2 + ε)(M/2 − y + 1) + 2ε|NE | > ε2(M/2 − y)

+ε(M/2 + x − 1)(M − 2y + 1 + ε) + ε|NE |(M/2 + x). (10)

15 Moreover, from the point just west of (x − 1+ ε, y − 1), it would not be desirable to continue deviating
along that edge because the number of edges from which the firm is losing consumers exceeds the number
from which it is gaining consumers.
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Fig. 14 Possible deviation from
a point u. Thick black lines
indicate consumers preferring u′
to u; thin black lines: consumers
preferring u to u′
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u′
ε

ε
2

ε
2

ε
2

That inequality (10) is true follows from the following three facts: (a) 2|SW |(M/2 −
y+1) > ε|NE |(M/2+x); (b) ε|SW |(M/2−y+1) > ε(M/2+x−1)(M−2y+1+ε);
and, (c) 2ε|NE | > ε2(M/2 − y). Inequality (a) can be written as

4(M/2+x)(M/2+y)(M/2−y+1) > 2ε(M/2 − x+1)(M/2−y + 1)(M/2 + x)

which, cancelling terms, is clearly true. Inequality (b) can be rewritten as

2(M/2 + x)(M/2 + y)(M/2 − y + 1) > 2(M/2 + x − 1)(M/2 − y + (1 + ε)/2).

Again, this is clearly true. Finally, (c) states that 2ε(M/2 − x + 1)(M/2 − y + 1) >

ε2(M/2 − y), also true.
Hence, there are three possibilities for the best deviation from u: the move to

(x − 1, y − 1+ ε), just north of it, or just east of (x − 1− ε, y − 1). Thus, K (u) will
be given by Eq. (6) and we have proven case (i).

For case (ii), where x = 1 and y > 0, the argument is similar to above. Two
possibilities for the best deviation are the point (x − 1, y − 1 + ε) and the point just
north of it. The third possibility is the point u = (x − 1, y − 1)—the firm would
not continue west this time because it would gain and lose consumers from the same
number of edges (see Fig. 14e). In case (ii), therefore, we have equations (7) and (8).

For case (iii), u = (x − ε, 0), where x > 0 and 0 < ε < 1. We show the move
that maximises Ku′�u/Ku�u′ is to the point (x − 1, 0). Consider a deviation by i to a
point further along the same edge (x − ε − η, 0) for very small η > 0. This is not
the best deviation because i could continue further towards the node (x − 1, 0) and
gain customers from all the parallel horizontal edges, while only losing customers
from the edge on which it is located. It follows that the best deviation would be to
u′ = (x − 1, 0). In this case,

K (u) = |Ku′�u |
|Ku�u′ | = (M/2 + x − 1)(M + 1) + (M/2 + x)M + M − (M − 1)(1 − ε)/2

(M/2 − x + 1)M + (M/2 − x)(M + 1) + 1 + (M − 1)(1 − ε)/2

= M2 + (2M + 1)x − 1/2 + ε(M − 1)/2

M2 + 2M − (2M + 1)x + 1/2 − ε(M − 1)/2
.
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Fig. 15 Possible deviations from a point u in the interior of an edge. Thick black lines indicate consumers
preferring u′ to u; thin black lines: consumers preferring u to u′; dotted lines: consumers indifferent between
u′ and u

Proof of Corollary 1 Case (i) follows by simply differentiating (5) with respect to M .
For (ii), we first show that each of the arguments in the maximum function in equation
(6) is decreasing in M . From this, the case where u is a node follow by setting ε = 0
because (6) reduces to (3) (in fact, in the following proof (6) would be decreasing in
M even allowing x = 1, which corresponds to nodes where x = 1).

Consider |SW ′|/|NE ′|. Differentiating with respect to M , the derivative is negative
if and only if

(M − x − y − ε/2 + 2)(2(M/2 + x)(M/2 + y) − ε(M/2 + x − 1))

− (M + x + y − ε/2)(2(M/2 − x + 1)(M/2 − y + 1) − ε(M/2 − y)) > 0.

This can be rewritten as

2(x + y − 1)(M(M + 2) − ε(M − x + y + 3) + 2(x + y − 2xy) + ε2/2) > 0,

which is equivalent to

(x + y − 1)(M2 + 2M − εM + εx − εy − 3ε + 2x + 2y − 4xy + ε2/2) > 0.

By assumption x + y−1 > 0 and the term in the second set of brackets can be written
as

(M2 − 4xy) + M(2 − ε) + y(1 − ε) + (2x + y − 3ε) + εx + ε2/2.

That this is positive follows from the facts that 1 ≤ x, y ≤ M/2 and 0 ≤ ε < 1.
Next, consider (|NW ′| + |SW ′|)/(|NE ′| + |SE ′|). This can be simplified to

(M/2 + x)(2M + 1) − M/2 + y − 1 + ε(M/2 − y)

(M/2 − x + 1)(2M + 1) − M/2 − y − ε(M/2 − y)
.
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Differentiating with respect to M , the derivative is negative if and only if

M2(4x + ε − 2) + (4M + 2)(x + y(1 − ε) − 1) > 0,

which is certainly true.
Similarly, consider (|SW ′′|+ |SE ′′|)/(|NW ′′|+ |NE ′′|). This can be simplified to

M2 + 2My + x + y − ε − 1

M2 − 2My + 2M − x − y + 1 + ε
.

Differentiating with respect to M , the derivative is negative if and only if

(2y − 1)M2 + 2M(x − ε) + 2M(y − 1) + x + y − 1 − ε > 0.

Given y > 0, x > 1 and 0 ≤ ε < 1, this is certainly true.
Next consider the case where u = (x − ε, y) where y > 0 and x = 1. It is

straightforward to show that, in a similar fashion to the above, (8) is decreasing in M .
In particular, its derivative is negative if and only if

(4y − 2)M2 + 4My + 2y(ε + 1) − ε > 0,

which is evidently true in this case.
Last, we consider the case where, without loss of generality, y = 0. The derivative

of (9) will be negative if and only if

M2(4x + ε − 2) + (2M + 1)(2x − 1 − ε) > 0,

which is always true.
Toprove (iii), if x > 0, it is easy to see that |SW ′|, |NW ′|+|SW ′| and |SW ′′|+|SE ′′|

are all increasing in x , while |NW ′|, |NE ′|+|SE ′| and |NW ′′|+|NE ′′| are decreasing
in x . Thus, the ratios in (6) are all increasing. This is true even when ε = 0 and when
x = 1, so the case of nodes follows. The same holds true when y increases. We also
need to check the case where x = 1, i.e., u = (1− ε, y). Two of the arguments in the
maximum in (7) are the same as in the previous case, hence increasing in x , and it can
also be shown that (8) is less than (|SW ′′(v)| + |SE ′′(v)|)/(|NW ′′(v)| + |NE ′′(v)|)
for v = (2 − ε, y). Thus, (8) will be less than K (v).

When y = 0, it is clear that (9) is increasing in x . Finally, we need to show that K (u)

is increasing when x = 0 and y > 1. By symmetry, consider instead u = (x − ε, 0)
and v = (x − ε, 1). We show that K (u) < K (v). Consider a deviation from v to just
north of v′ = (x − 1, y − 1 + ε). For this move,

Kv′�v

Kv�v′
= |NW ′(v)| + |SW ′(v)|

|NE ′(v)| + |SE ′(v)| ≤ K (v).

Using Eq. (9), after a bit of algebra it can be shown that K (u) < K (v). 	
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