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ABSTRACT

In this paper, we quantify the statistical properties and dynamics of the frequency of hashtag use on Twitter. Hashtags are special words used
in social media to attract attention and to organize content. Looking at the collection of all hashtags used in a period of time, we identify
the scaling laws underpinning the hashtag frequency distribution (Zipf’s law), the number of unique hashtags as a function of sample size
(Heaps’ law), and the fluctuations around expected values (Taylor’s law). While these scaling laws appear to be universal, in the sense that
similar exponents are observed irrespective of when the sample is gathered, the volume and the nature of the hashtags depend strongly on
time, with the appearance of bursts at the minute scale, fat-tailed noise, and long-range correlations. We quantify this dynamics by computing
the Jensen–Shannon divergence between hashtag distributions obtained τ times apart and we find that the speed of change decays roughly as
1/τ . Our findings are based on the analysis of 3.5 × 109 hashtags used between 2015 and 2016.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004983

The mathematical study of social systems is only possible because
similar processes exist in seemingly different social configura-
tions. Two examples from dynamical systems are rich-get-richer
processes—responsible for the appearance of fat-tailed distribu-
tions—and evolutionary processes—controlling the dynamics of
memes. Data from the microblogging platform Twitter allow us
to study these two generic processes with an unprecedented quan-
titative accuracy. Here, we view hashtags as memes and quantify
emerging properties of the collective interaction between these
memes, including the appearance of scaling laws and the different
time scales involved in their dynamics.

I. INTRODUCTION

Hashtags (“#”) have proven to be one of the most successful
innovations in social-media language. They were originally intro-
duced on Twitter to identify topical content in tweets,1 essentially
serving as topic markers to facilitate search and retrieval2 in the
face of an overwhelming amount of information. For instance, the
hashtag “#DynamicsOfSocialSystems” could be used in social-media

messages to help users identify comments and papers relevant to this
topic. In parallel to this, hashtags also provide a means for users to
enhance social ties2 and conduct a metacommentary distinct from
other tweet content.3 Users exposed to a hashtag are invited to use
(or modify) the hashtag, starting an imitation4 and mutation pro-
cess that leads to a fat-tailed distribution5,6 of hashtag frequencies7

and that is typical of evolutionary dynamics observed more gen-
erally (e.g., in language and in memes).8,9 Hashtags are thus con-
venient—can be easily identified and traced—and generic—show
behavior seen in various systems (e.g., language, social media,
etc.)—creating thus an ideal scenario for a data-driven study of the
dynamics of social systems.

Previous works examining the dynamical processes under-
pinning hashtag use have focused on the role of the connections
between users on the resulting dynamics.7,10 As such, these works
form part of a more general area of research exploring the nature
of user driven dynamics on social media.11,12 For instance, models of
user behavior have been able to explain the appearance of a fat-tailed
distribution in the distribution of tweets11,13–15 and bursty behavior
in the attention of specific topics in Twitter.12 Other works have
focused on specific hashtag dynamics, for instance, on the response
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to an external event,16 for the purposes of ease of analysis while
developing data-mining methods17 or while studying the competi-
tion behind diffusion processes.18–20 Instead, here we are interested
not in the dynamics of specific hashtags, but rather in the gen-
eral statistical behavior of all hashtags used during a particular time
window. By looking at all hashtags simultaneously, we account for
interactions between different hashtags and we provide an overall
statistical characterization of the dynamics of hashtag usage. This is
done by repeating classical analyses done in quantitative linguistics
for word frequencies.21–27 This approach is justified not only because
hashtags can be seen as special types of words but also because simi-
lar dynamical (evolutionary) processes affect the frequency of word
usages (albeit at different scales).

The main findings of our manuscript are that hashtags fol-
low statistical laws similar to the linguistic laws observed for
words—such as Zipf’s and Heaps’ laws—but that differences appear
due to the dynamics of the hashtags. We identify two main aspects
of the dynamics of hashtags that differ from natural language: (i)
extremely bursty behavior in the usage of hashtags over time leads
to larger than expected fluctuations around the statistical laws, as
characterized by an unusual scaling exponent of Taylor’s law and
(ii) hashtag usage evolves rapidly with time τ . We quantify the latter
using the (generalized) Jensen–Shannon distance between hashtag
observations separated by time τ ,28 and we find a scaling law which
characterizes the change in hashtag usage as a function of τ .

This paper is divided as follows. In Sec. II, we describe our data
and we show relevant time scales of the dynamics. In Secs. III and
IV, we focus on the distribution and scaling behavior of hashtag fre-
quencies, comparing them to results for word frequencies. In Sec. V,
we investigate how fast the hashtag distributions change, reporting
a new scaling law for the dynamics of hashtags.

II. TIME SERIES OF TYPES AND TOKENS

Our database consists of all hashtags used in a 10% sample of
all tweets published between November 1, 2015 and November 30,
2016. For a given time interval ([t, t + b]) around time t and of (bin)
size b, we count how many hashtags were used in our database. Here
it is important to distinguish between hashtag types (i.e., unique
hashtags) and hashtag tokens (i.e., the repetitive usage of potentially
the same hashtags). For instance, in our complete database (b = 392
days), the hashtag type “#mtvstars” is the most frequently used
hashtag (rank r = 1), responsible for the appearance of Mr=1

= 49M hashtag tokens. Next, we have “#kca” with Mr=2 = 28M and
“#iheartawards” with Mr=3 = 26M. Overall, we have N = 57
876 308 types and M =

∑N
r=1 Mr = 3 492 300 357 tokens in our

database. We denote N(t) and M(t) as the number of hashtag types
and tokens, respectively, in an interval of size b starting at time t.33

Figure 1 shows how the number of hashtag tokens M and types
N change in time t at different time scales. The time series of tokens
M(t) shows a more noisy behavior than the time series N(t) of types:
M(t) shows pronounced bursts and spikes while N(t) reflects more
clearly the weekly and daily oscillations of Twitter usage. We see a
weekly minimum in activity on a Sunday, while the daily maximum
occurs around 1600 GMT. At short time scales, both time series have
peaks at the first minute of each hour and each half hour, suggesting
that a large number of pre-programmed tweets are being launched

at regular patterns. The main peak in M(t) highlighted in this figure
is mostly due to the hashtag “#iheartawards,” which was used during
a music awards show that took place in the USA on April 3, 2016 and
has rank r = 3 in our complete database.

III. ZIPF’S LAW

We are interested in the share of total hashtag tokens obtained
by the different hashtag types, which can be interpreted as the suc-
cess rate of individual memes in attracting the attention of users.30

This possibility of the “rich-getting-richer” element of hashtag use
suggests that a fat-tailed distribution should be expected, because of
the ubiquity of such a distribution type in data from natural and
social systems.5–7 Possibly the best known example of such a dis-
tribution is Zipf’s law, which states that the frequency Fr = Mr/M
(i.e., the fraction of all tokens) of the r-th most frequent word (type)
decays with r as

Fr ∼ r−γ , (1)

with γ ' 1.
In Fig. 2, we show a representation of the hashtag distribution.

We observe that a similar distribution is observed for different time
intervals, that the distribution spans many orders of magnitude—in
agreement with the fat-tailed character of Eq. (1)—, and that the
distribution shows a positive concavity (in the double-logarithmic
plot) indicating a faster than Zipfian decay. All these observations
have been reported for the frequency of words in a recent analysis
of Zipf’s law in a large dataset (Google n-grams)23 and are consistent
with previous analysis of hashtag frequencies.7

The observations above motivate us to consider whether gen-
eralizations of Zipf’s law proposed to describe word frequencies are
also describing hashtag frequencies. We considered the distributions
and methodology proposed in Ref. 23 to determine which of the
eight parameterizations of Fr best describes our hashtag data. Table I
lists the different distributions, the best inferred parameters, and a
measure of the agreement between data and the (best) distributions.
The results show that the best generalized Zipf’s law is obtained by a
lognormal fit of the rank distribution,

Fr = Cr−1 exp

(

−1

2
(ln(r) − m)

2
/s2)

)

, (2)

where C = C(m, s) is a normalization constant and m, s are free
parameters such that m < s2. The restriction in the parameter choice
is necessary to ensure that Eq. (2) is monotonically decaying in the
integers r. This is necessary because, by construction, Fr is monoton-
ically decaying (a lognormal distribution in Fr does not imply that
the number of hashtag types with a given frequency Mi/M is also
lognormal). A further indication that the distribution (2) provides a
good description of the data for different times t is the fact that the
estimated parameters m and s do not strongly depend on the size
of the database b (see the lower panel of Fig. 2). This is a different
finding from the one reported for natural language, where a double
power-law distribution provided a better fit.21,23 Differently from the
case of language, in the case of hashtags, the double gamma distri-
bution (with three free parameters) leads to a smaller likelihood L

(or larger − logL) than the lognormal. Moreover, the parameters
of the double gamma in the hashtag distributions differ from the
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FIG. 1. Time series of hashtag tokens
M(t) (left column) and types N(t) (right
column). Reported (y axis) is the rate of
usage (N/b and M/b with b measured in
seconds). Each panel corresponds to a
magnification in the time scale (x axis) of
the panel immediately above it in the region
indicated by vertical dashed (red) lines. In
the two top panels, the data were aggre-
gated at different scales b: b = 1 day
for the two top panels, b = 1 h for the
middle panels, and b = 1min for the lower
two panels.33 Time corresponds to GMT.
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FIG. 2. Fat-tailed distribution of hashtag frequencies. (a) The solid (black) curve
shows the frequency Fr (y axis) of the r th (x axis) most frequent hashtag in
our complete database b = 392 days. The thin (colored) lines show the results
obtained for 30 different cases with b = 1 day. The inset shows a magnifica-
tion for small r . In the main panel, the dotted line corresponds to Zipf’s law (1)
with the maximum-likelihood parameter γ̂ = 1.13 inferred from the data and the
dashed (red) line correspond to the best generalized Zipf’s law given by Eq. (2)
with estimated parameters m̂ = 8.25andŝ = 3.83. Panels (b) and (c) show how
the parameters m̂ and ŝ vary with the size of the database b used in the estimate,
i.e., we used all hashtags in the time interval [t, t + b] with t fixed (the minimum)
and varying b.

case of language: while for language the first exponent was γ = 1 (as
originally proposed by Zipf), in the case of hashtags, the first expo-
nent is γ ≈ 0.8 < 1. Altogether, in comparison to word frequencies,
hashtags have a slower initial decay of Fr (i.e., the top ranked hash-
tags have a more similar frequency) and a faster asymptotic decay of
Fr (which is faster than a power law but slower than an exponential).

IV. HEAPS’ AND TAYLOR’S LAWS

The Zipfian-type behavior of hashtag frequencies motivates
us to consider also other statistical laws proposed in quantitative
linguistics.21–24,26,27 We start with Heaps’ law, which states that the

number of types N and tokens M scale nonlinearly as

N ∼ Mλ, (3)

where λ < 1 and the symbol ∼ indicates that the ratio of the left and
right sides tend to a constant for large M. To perform this analysis,
we compute M(t) and N(t) at different time intervals [t, t + b], for
different t’s and b’s as above. We then consider averages 〈· · · 〉 over
all times t for a fixed b and compute the expected value and standard
deviation of these quantities as

µM = 〈M(t)〉, σM =
√

〈M2(t)〉 − 〈M(t)〉2, (4)

µN = 〈N(t)〉, σN =
√

〈N2(t)〉 − 〈N(t)〉2. (5)

By varying b from minutes to months, we effectively vary the size of
the database over many orders of magnitude, allowing us to explore
the scaling between these quantities.

In our case, Heaps’ law (3) is interpreted as the relation between
how µN (the expected number of types N) scales with µM (the
expected number of tokens M). The results in Fig. 3 reveal a striking
scaling law over more than four decades, with an estimated expo-
nent λ ≈ 0.73. In this plot, we also show the results obtained after
shuffling the series at the scale of b = 1 min. We observe that µN is
increased in the randomized data, reflecting the existing correlation
between the hashtags used in neighboring time intervals.25 How-
ever, the same Heaps law scaling is observed for the shuffled data,
in agreement with the previous demonstrations that Heaps’ law can
be obtained from a random sampling of Zipf’s law.25

We now investigate how the fluctuations σ scale with the mean
µ as

σ ∼ µβ . (6)

Reference 31 provides a review of this scaling, known as Taylor’s law,
showing its appearance and significance in various complex systems.
The exponent β = 1/2 is obtained if we consider that the quantity
of interest (M in our case) is obtained as the sum of random quanti-
ties sampled independently from a distribution with a well-defined
second moment. In our case, we can think that the values M in a
time interval [t, t + b] are obtained as the sum of the number of
hashtags at smaller scales. The case β = 1 reflects the lack of mix-
ing in the terms being summed.25,31 Nontrivial values, 0.5 < β < 1,
are obtained in the presence of long-range correlations (in time t)
or if the underlying distribution from which samples are taken does
not have a second moment (large fluctuations of M in small time
intervals). In natural language, β = 1 was observed for the case of
word types N25 and 0.5 < β < 1 was reported for the fluctuation of
individual words.27

The results for our hashtag dataset are reported in Fig. 4 and
indicate that the exponent β ≈ 0.84 is clearly within the range of
non-trivial values (i.e., clearly different from β = 0.5 and β = 1.0).
In order to clarify the origin of this non-trivial exponent, we repeat
the analysis after randomizing the time series M(t). As expected,
the exponent after the randomization βR ≈ 0.6 is smaller than the
original exponent. The fact that this exponent is still larger than 1/2
indicates that the origin of the non-trivial Taylor’s law in the hash-
tag frequencies is due to both long-range correlation in M(t) and
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TABLE I. Generalized Zipf’s law for hashtag frequencies. Different models for the rank-frequency distribution Fr ≡ F(r|�) were fitted to the empirical distribution Fr using the

maximum-likelihood methods proposed in Ref. 23. The parameters � that maximize the likelihood L are reported together with the negative log-likelihood per token − logL/M

(at the given parameters). The model with maximum likelihood (minimum − logL) is the lognormal model (value in boldface in the last column).

Model Fr ≡ F(r| �) Parameter estimates − logL/M

Simple Cr−γ γ = 1.11 11.544
Shifted power law C(r + a)−γ γ = 1.25, a = 119.8 11.205
Exponential cutoff Cexp ( − ar)r−γ γ = 0.96, a = 1.11 11.195
Naranan Cexp ( − a/r)r−γ γ = 1.16, a = 5.093 1 11.347
Weibull Cexp ( − ar−γ )rγ−1 γ =−0.24, a = 4.51 12.175

Lognormal Cr−1 exp(− 1
2
(ln(r) − m)

2
/s2) m = 8.25, s = 3.83 11.075

Double power law C

{

r−1 r ≤ a

aγ−1r−γ r > a
γ = 1.57, a = 352 288.8 11.186

Double gamma C

{

r−γ1 r ≤ a

aγ2−γ1 r−γ2 r > a
γ 1 = 0.808 3, γ 2 = 1.407 9, a = 181 45.1 11.091

sampling from an underlying fat-tailed distribution (with diverg-
ing second moment). The latter point is consistent with the bursty
behavior of N(t) reported in Fig. 1 above and also with the results of
Ref. 12.

V. HASHTAG DYNAMICS

So far, we have concentrated on general statistical characteriza-
tions of hashtag frequencies that remain roughly invariant over time
t, finding a Zipfian-like distribution and different scales between the
total number of hashtag types N and tokens M. Underlying these
relationships, there is a rich dynamical process of the usage Ni(t)
of individual hashtags. Our goal here is to quantify the extent into
which, collectively, the frequency of all M hashtags change over time.

FIG. 3. The expected number of types µN and tokens µM scale non-linearly
as described by Heaps’ law (3). The hashtag data—� with (blue) line—were
obtained using time intervals b ranging from b = 1min to b = 256 days. The
error bars correspond to σM (x axis) and σN (y axis). The results obtained after
shuffling the temporal order ofM(t) and N(t) obtained the scale of b = 1min are
shown as• with (red) line. The scaling exponents λ indicated in the legend were
obtained from a linear regression of the average results (dashed lines).

We use an information theoretic measure to quantify the similar-
ity of two (normalized) frequency distributions, Fr(t1) and Fr(t2),
following the approach used in Ref. 28 for language.

For each hashtag type n = 1, . . . , N, we define the frequency
at time ts as pn = Mn(ts)/M(ts). We consider the frequencies
pn to be an estimate of the probability of using this hashtag and
p = (p1, p2, . . . , pN) the probability distribution over all hashtags.
The α entropy of p is defined as

Hα(p) = 1

1 − α

(

∑

i

pα
i − 1

)

(7)

FIG. 4. Fluctuations and average number of tokens scale non-linearly as
described by Taylor’s law (6). The average µM (x axis) and standard deviation
σM (y axis) of the hashtag data—� with (blue) line—were obtained for intervals
ranging from b = 1min to b = 256 days. The results obtained after shuffling the
temporal order ofM(t) andN(t) are shown as•with (red) line. The shuffling per-
formed at the scales of b = 1min, b = 1 h, and b = 1 day all showed the same
scaling with a different pre-factor. The plot shows a combined curve obtained after
re-scaling the curves for b = 1 h and b = 1 day by a constant factor so that they
agree with the b = 1min curve. The scaling exponents β indicated in the legend
were obtained by linear regression (dashed lines).
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and the similarity between two distributions, p and q, can be quan-
tified using the α-generalized Jensen–Shannon divergence

Dα(p, q) = Hα

(

p + q

2

)

− 1

2
Hα(p) − 1

2
Hα(q). (8)

For α = 1, we recover the usual Shannon entropy H(p)

= −
∑

i pi log pi and Jensen–Shannon divergence, which can be
viewed as a symmetrized Kullback–Leibler divergence. Finally, we
quantify the similarity between distributions by taking the square
root of the divergence

Jα ≡
√

Dα . (9)

As Jα has metric properties for 0 ≤ α ≤ 2, it is a natural choice
to measure distance. We use α = 1 and α = 2 to obtain different

FIG. 5. Dynamics of hashtags. Panels (a) and (b) show the distance 〈Jα〉 (y axis)
between the hashtag usage separated by time τ (x axis). The symbols (error
bars) correspond to the average (standard deviation) Jα computed over all times
t for a fixed time separation τ . The α entropy in Eq. (7) was used to compute Jα

in Eq. (9) for α = 1 (a) and α = 2 (b). Panel (c) shows the derivative d〈Jα〉/dτ
of the curves in panels (a) and (b), revealing a scaling law between d〈Jα〉/dτ
and τ . The maximum possible value of J1 is J1 =

√
ln 2 ≈ 0.83.28

perspectives on the dynamics of hashtags: larger values of α give
more weight to high-frequency hashtags.28 Moreover, the statisti-
cal estimators of Jα converge very slowly with sample size M for
data with Zipfian frequency distribution28,29 and are better for α = 2
when compared to the usual α = 1.

The results obtained for our hashtag data are reported in Fig. 5
and show rich dynamics. The growth of 〈Jα〉 with τ indicates that the
measures Jα (9) are able to quantify the changes in hashtag frequen-
cies we are interested in. Weekly oscillations are clearly visible in J1

but not in J2, indicating that there are a large number of hashtags
that are not among the top ranked ones but are used repeatedly in
the same day of the week (e.g., “#MondayMotivation”). The overall
growth of Jα is slowing down with τ (i.e., the change in hashtag fre-
quencies is larger for smaller τ ’s). Our main empirical finding is that
this slowdown follows an orderly pattern, described by the scaling
law

d〈J〉/dτ ∼ 1/τ η , (10)

with η ' 1. This suggests that there is no characteristic time scale
for the change of hashtag frequencies in Twitter but that instead it
slows down in a self-similar fashion.

VI. CONCLUSIONS

In summary, we provided a general statistical characterization
of the frequency of hashtags on Twitter. We found that the fre-
quency distribution follows a Zipfian pattern with a faster decay
than a simple power law. We found that this distribution is well
described by the lognormal rank-frequency distribution (2). The
type-token relationship shows a scaling law characteristic of Heaps’
law, with non-trivial large fluctuations around expected values that
follow a fluctuation scaling relationship (Taylor’s law). These large
fluctuations are due to the very noisy dynamics of hashtag tokens,
which shows fat-tailed fluctuations and long-range temporal cor-
relations. We also quantified the collective dynamics due to the
change in the frequency pi of individual hashtags i using a gen-
eralized Jensen–Shannon divergence. We found that the distance
between hashtag distributions separated by time τ grows with τ ,
showing weak oscillations (i.e., distributions at the same day of the
week are more similar to each other) and that the velocity of the
change decays with τ , following a newly discovered scaling law, 1/τ η

with η ' 1.
A comparison of our findings to previous results for the fre-

quency of words in large collections of texts is given in Table II. It
reveals striking similarities but also notable differences due to the
different dynamics of hashtag and word frequencies. While in texts,
word tokens of the same word type cluster together, this happens in
the middle of many high-frequency function words that permeate
the texts with a more regular frequency. In contrast, the appear-
ance of a (new) hashtag can trigger a large response of the usage
of the same hashtag, leading to much wider fluctuations and corre-
lations. In fact, the top ranked word in English (“the”) remains the
same over centuries, showing a frequency F1 ≈ 5% that varies only
slightly (between 4% and 6%) over 200 years (in the Google n-gram
database). In contrast, the most frequent hashtag not only varies
from day to day but also the frequency of the top ranked hashtag
can vary dramatically. For instance, on the first day of our dataset
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TABLE II. Statistical laws for the frequency of hashtags in Twitter and for the frequency of words in texts.

Words in texts (English) Hashtags in Twitter

Zipf-like decay of frequency Fr Yes, faster than r−1 Yes, faster than r−1

Best generalized Zipf’s law Double power law21,23

{

r−1 r ≤ a

aγ−1r−γ r > a
Lognormal Cr−1 exp(− 1

2
(ln(r) − m)

2
/s2)

Heaps’ law M ∼ Nβ β ∈ [0.52, 0.62]23 β = 0.73
Taylor’s law µ ∼ σ λ λ= 125 λ = 0.84
Dynamics Jα Linear growth over centuries, constant dJ/dτ 28 Sub-linear growth over months, dJ/dτ ∼ 1/τ η

(01-11-2015), the top ranked hashtag was “#pushawardskathniels”
with a frequency of 4.3%, while the hashtag “#mtvstars” was ranked
143rd with a frequency of 0.05%. Two weeks later, the hashtags
“#pushawardskathniels” and “#mtvstars” were ranked tenth and
first, respectively, with frequencies of 0.7% and 10.9%.

A number of our statistical observations are similar to obser-
vations reported in isolation in earlier work, such as the bursti-
ness of hashtags and high variability between hashtag volumes,30

the appearance of fat-tailed distributions in the frequency of
hashtags,7 and the steady evolution of social-media language with
time.32 With the combined statistical laws articulated here, we
hope to provide a framework for generative models to be com-
pared with. Our findings provide statistical results that (modi-
fications of) existing mechanistic models of social dynamics,4,20

language,22,23 and Twitter11,12 should reproduce. Next steps could
be to verify in which extent previous models are able to repro-
duce our observations and to look in more detail at the nature of
the hashtag evolution, e.g., to clarify whether certain types (sub-
populations) of hashtags lead to different statistical features or
whether the nature of hashtag usage changes more broadly at longer
timescales.

ACKNOWLEDGMENTS

We thank Martin Gerlach for sharing the code that was used
in the generalized Zipf’s law analysis. H.H.C. was funded by a Deni-
son fellowship, and E.G.A. and T.J.A. were funded by the CTDS-
Incubator Scheme (Grant No. G5121), both from The University of
Sydney. D.F.M.O. was supported by the ARL through ARO Grant
No. W911NF-16-1-0524. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
here on.

DATA AVAILABILITY

The data that support the findings of this study are openly avail-
able in Zenodo at https://doi.org/10.5281/zenodo.3673744, Ref. 34
and https://doi.org/10.5281/zenodo.3842680, Ref. 35.

REFERENCES

1J. Hurlock and M. L. Wilson, “Searching Twitter: Separating the Tweet from the
Chaff,” in Proceedings of the Fifth International AAAI Conference on Weblogs and
Social Media (AAAI, 2011).
2M. Zappavigna, “Searchable talk: The linguistic functions of hashtags,” Soc.
Semiotics 25, 274 (2015).
3M. Zappavigna, Searchable Talk: Hashtags and Social Media Metadiscourse
(Bloomsbury Academic, London, 2018).
4J. P. Bagrow and L. Mitchell, “The quoter model: A paradigmatic model of the
social flow of written information,” Chaos 28, 075304 (2018).
5M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemp.
Phys. 46, 323 (2005).
6M. Mitzenmacher, “A brief history of generative models for power law and log-
normal distributions,” Internet Math. 1, 226 (2004).
7E. Cunha, G. Magno, G. Comarela, V. Giovanni, M. A. Gonçalves, and F. Ben-
evenuto, “Analyzing the dynamic evolution of hashtags on Twitter: A language-
based approach,” in Proceedings of the Workshop on Languages in Social Media
(Association for Computational Linguistics, 2011), p. 58.
8M. Naaman, H. Becker, and L. Gravano, “Hip and trendy: Characteriz-
ing emerging trends on Twitter,” J. Am. Soc. Inform. Sci. Tech. 62, 902
(2011).
9D. M. Beskow, S. Kumar, and K. M. Carley, “The evolution of political memes:
Detecting and characterizing internet memes with multi-modal deep learning,”
Inf. Process. Manag. 57, 102170 (2020).
10D. M. Romero, B. Meeder, and J. Kleinberg, “Differences in the mechanics of
information diffusion across topics: Idioms, political hashtags, and complex con-
tagion on Twitter,” in Proceedings of the 20th International Conference on World
Wide Web (Association for Computing Machinery, 2011), p. 695.
11J. P. Gleeson, K. P. O’Sullivan, R. A. Baños, and Y. Moreno, “Effects of network
structure, competition and memory time on social spreading phenomena,” Phys.
Rev. X 6, 021019 (2016).
12M. De Domenico and E. G. Altmann, “Unraveling the origin of social bursts in
collective attention,” arXiv:1903.06588 (2019).
13L. Weng, A. Flammini, A. Vespignani, and F. Menczer, “Competition among
memes in a world with limited attention,” Sci. Rep. 2, 335 (2012).
14K. Lerman, R. Ghosh, and T. Surachawala, “Social contagion: An empir-
ical study of information spread on Digg and Twitter follower graphs,”
arXiv:1202.3162 (2012).
15N. Daniele and C. Castellano, “Analytical study of quality-biased competition
dynamics for memes in social media,” Europhys. Lett. 122, 28002 (2018).
16M. Tremayne, “Anatomy of protest in the digital era: A network analysis of
Twitter and occupy wall street,” Soc. Mov. Stud. 13, 110 (2014).
17K. G. Kapanova and S. Fidanova, “Generalized nets: A new approach to
model a hashtag linguistic network on Twitter,” in Advanced Computing
in Industrial Mathematics: 12th Annual Meeting of the Bulgarian Section of
SIAM, Sofia, Bulgaria, 20–22 December 2017, Revised Selected Papers, edited by
K. Georgiev, M. Todorov, and I. Georgiev (Springer International Publishing,
2019), p. 211.
18H. Bingol, “Fame emerges as a result of small memory,” Phys. Rev. E 77, 036118
(2008).

Chaos 30, 063112 (2020); doi: 10.1063/5.0004983 30, 063112-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.5281/zenodo.3673744
https://doi.org/10.5281/zenodo.3842680
https://doi.org/10.1080/10350330.2014.996948
https://doi.org/10.1063/1.5011403
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1002/asi.21489
https://doi.org/10.1016/j.ipm.2019.102170
https://doi.org/10.1103/PhysRevX.6.021019
http://arxiv.org/abs/arXiv:1903.06588
https://doi.org/10.1038/srep00335
http://arxiv.org/abs/arXiv:1202.3162
https://doi.org/10.1209/0295-5075/122/28002
https://doi.org/10.1080/14742837.2013.830969
https://doi.org/10.1103/PhysRevE.77.036118


Chaos ARTICLE scitation.org/journal/cha

19J. Ratkiewicz, S. Fortunato, A. Flammini, F. Menczer, and A. Vespignani, “Char-
acterizing and modeling the dynamics of online popularity,” Phys. Rev. Lett. 105,
158701 (2010).
20D. F. M. Oliveira and K. S. Chan, “The effects of trust and influence on the
spreading of low and high quality information,” Phys. A Stat. Mech. Appl. 525,
657–663 (2019).
21R. Ferrer-i-Cancho and R. V. Solé, “Two regimes in the frequency of words and
the origins of complex lexicons: Zipf’s law revisited,” J. Quant. Linguist. 8, 165
(2001).
22D. Zanette and M. Montemurro, “Dynamics of text generation with realistic
Zipf’s distribution,” J. Q. Lingusitics 12, 29 (2005).
23M. Gerlach and E. G. Altmann, “Stochastic model for the vocabulary growth in
natural languages,” Phys. Rev. X 3, 021006 (2013).
24F. Font-Clos, G. Boleda, and A. Corral, “A scaling law beyond Zipf’s law and its
relation to Heaps’ law,” New J. Phys. 15, 093033
(2013).
25M. Gerlach and E. G. Altmann, “Scaling laws and fluctuations in the statistics of
word frequencies,” New J. Phys. 15, 113010 (2014).
26E. G. Altmann and M. Gerlach, “Statistical laws in linguistics,” in Creativity
and Universality in Language, Lecture notes in Morphogenesis (Springer, 2016),
pp. 7–26.
27K. Tanaka-Ishii and T. Kobayashi, “Taylor’s law for linguistic
sequences and random walk models,” J. Phys. Commun. 3, 089401 (2019).

28M. Gerlach, F. Font-Clos, and E. G. Altmann, “On the similarity of symbol-
frequency distributions with heavy tails,” Phys. Rev. X 6, 021009 (2016).
29A. Koplenig, S. Wolfer, and C. Müller-Spitzer, “Studying lexical dynamics and
language change via generalized entropies: The problem of sample size,” Entropy
21, 464 (2019).
30O. Tsur and A. Rappoport, “What’s in a hashtag? Content based prediction of
the spread of ideas in microblogging communities,” in Proceedings of the Fifth
ACM International Conference on Web Search and Data Mining (Association for
Computing Machinery, 2012), p. 643.
31Z. Eisler, I. Bartos, and J. Kertész, “Fluctuation scaling in complex systems:
Taylor’s law and beyond,” Adv. Phys. 57, 89-142 (2008).
32J. Grieve, A. Nini, and D. Guo, “Analyzing lexical emergence in Modern
American English online,” Eng. Lang. Linguistics 21, 99 (2017).
33An important difference between N(t) and M(t) is that M(t) is simply the
sum of M(t) of sub-intervals (of smaller size b) while for N(t), this is not the
case because we are interested in unique hashtags. This leads to a sub-linear
relationship between types and tokens, which is investigated in the context of
Heaps’ law.
34H. H. Chen, T. J. Alexander, D. F. M. Oliveira, and E. G. Altmann
(2020), “Scaling laws and dynamics of hashtags on Twitter,” Zenodo3673744.
https://doi.org/10.5281/zenodo.3673744
35E. G. Altmann and H. H. Chen (2020), “edugalt/TwitterHashtags: First public,”
Zenodo3842680, https://doi.org/10.5281/zenodo.3842680.

Chaos 30, 063112 (2020); doi: 10.1063/5.0004983 30, 063112-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevLett.105.158701
https://doi.org/10.1016/j.physa.2019.03.034
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1080/09296170500055293
https://doi.org/10.1103/PhysRevX.3.021006
https://doi.org/10.1088/1367-2630/15/9/093033
https://doi.org/10.1088/1367-2630/16/11/113010
https://doi.org/10.1088/2399-6528/ab3616
https://doi.org/10.1103/PhysRevX.6.021009
https://doi.org/10.3390/e21050464
https://doi.org/10.1080/00018730801893043
https://doi.org/10.1017/S1360674316000113
https://doi.org/10.5281/zenodo.3673744
https://doi.org/10.5281/zenodo.3842680

	I. INTRODUCTION
	II. TIME SERIES OF TYPES AND TOKENS
	III. ZIPF'S LAW
	IV. HEAPS' AND TAYLOR'S LAWS
	V. HASHTAG DYNAMICS
	VI. CONCLUSIONS
	ACKNOWLEDGMENTS

